
Day 1 - Session 4
LLM Application Development

27. Oct 2023
Aaron Celeste

aaron.v.celeste@uit.no

• Vector Embedding

• Vector Databases

• LLM API

• Langchain

• Agents

• Memory

• OpenAI Playground

• Demo

This Presentation

Images generated by Dall-E

Other Frameworks
besides Langchain:

FlowiseAI

AutoGPT

AgentGPT

BabyAGI

Langdock

GradientJ

LlamaIndex

MetaGPT

Application Development

Vector Embedding

Text is converted into a string of numbers (a vector)
in a way that's specific to the particular llm

Each number represents a feature of the LLM model

This group of features together encode concepts like
positivity, gender, formality, and any other concepts
that effect the meaning of a block of text in a way that
the LLM model was trained to detect

LLMs process these vectors
LLMs are trained on vectors of texts
When you submit a query, it's converted into a vector
embedding before it's fed to the model

Works also on images

Dall-E

Vector Databases

What if you want to ask an LLM about a large text
which it has not been trained on such as private
records?

Split it into chunks, vectorize, and plot them in high
dimensions

Compare the chunks to your query and submit
similar chunks to the LLM along with your query

These similarity searches are not new

Modern examples: Pinecone and Chroma

Dall-E

LLM API

Companies that make LLMs available offer
APIs to embed text into vectors as well as
query their LLMs

In python you can submit queries to
specific OpenAI or HuggingFace models
programmatically after installing a library
easily accessible through pip install

from langchain.llms import OpenAI
import os

os.environ["OPENAI_API_KEY"] = "sk-XXX"

llm = OpenAI(model_name="text-davinci-
003")

print(llm("Tell me about tromso"))

Langchain

Middle man between user and LLM, helping to format prompts

Prebuilt chains, and rearrangeable modules

Dall-E

Chains package together
commonly used functions like
getting a summary of multiple texts
and summarizing the combined
summaries

Everything is customizable using the
building blocks of these chains so
you can do complicated things like
nesting agents inside other agents

Langchain
Agents

Prompt an LLM to make a step
by step plan to accomplish the
goal of the user's query

Define tools which the LLM can
use

The agent sends the output of
the tool back to the LLM, giving it
the opportunity to change course
based on the situation

Variations: strict plan adherence,
specialized or general, chat
capability to hold a conversation
enabling user follow up

Dall-E

from langchain.agents.agent_toolkits import create_python_agent
from langchain.tools.python.tool import PythonREPLTool
from langchain.llms.openai import OpenAI
from langchain.agents.agent_types import AgentType
import os
os.environ["OPENAI_API_KEY"] = "sk-XXX"

query = input("What can I help you with? ")

agent = create_python_agent(
OpenAI(temperature=0.5),
tool=PythonREPLTool(),
verbose=True,
agent_type=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
agent_executor_kwargs={"handle_parsing_errors": True},

)

print(agent.run("This is a linux machine. First, import any python libraries that you'll need.
" + str(query) + ". If you get the same error twice, try a different method. Before you finish,
please also print a summary of any results to the console with a print statement. Add a hashtag
to the end of python code."))

Langchain

Simplicity of setting up an agent

Langchain

LLMs don't have memory
of previous queries
unless you build that in
somehow

It's mostly all just prompt
engineering

Buffer memory, buffer
window memory,
summary memory, token
buffer memory

Memory

Dall-E

Dall-E

OpenAI Playground

https://platform.openai.com/playground?mode=complete

This is useful for creating an LLM prompt to use in LLM powered tools

You can see the confidence of the model in each token it generates

Play around with temperature and a top P

https://platform.openai.com/playground?mode=complete

DEMO

Large text processor

Data cleaner

General python agent

Demo Code:

Warning

Thought: I need to open the file and read it
Action: Python_REPL
Action Input: file = open('thesis.pdf', 'rb')
pdfReader = PyPDF2.PdfFileReader(file)
pageObj = pdfReader.getPage(0)
text = pageObj.extractText() #
Observation: DeprecationError('PdfFileReader is deprecated and
was removed in PyPDF2 3.0.0. Use PdfReader instead.')

Thought: I need to use a different library to read the PDF file
Action: Python_REPL
Action Input: import pdfplumber
with pdfplumber.open('thesis.pdf') as pdf:
page = pdf.pages[0]
text = page.extract_text() #

Observation: ModuleNotFoundError("No module named
'pdfplumber'")

Thought: I need to install the pdfplumber library
Action: Python_REPL
Action Input: pip install pdfplumber #
Observation: SyntaxError('invalid syntax', ('<string>', 1, 5, 'pip install
pdfplumber #\n', 1, 12))

Thought: I need to use the pip command in the terminal
Action: Terminal
Action Input: pip install pdfplumber
Observation: Terminal is not a valid tool, try one of [Python_REPL].

Thought: I need to use the library to read the PDF file
Action: Python_REPL
Action Input: import pdfplumber
with pdfplumber.open('thesis.pdf') as pdf:
page = pdf.pages[0]
text = page.extract_text() #

Observation: ModuleNotFoundError("No module named
'pdfplumber'")

Thought: I need to install the pdfplumber library
Action: Python_REPL
Action Input: import pip
pip.main(['install', 'pdfplumber'])
Observation: Collecting pdfplumber
Downloading pdfplumber-0.10.2-py3-none-any.whl (47 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
━━━━━━━━━ 47.5/47.5 KB 1.4 MB/s eta 0:00:00

Demo Code

Demo Code:

