
Day 2 - Session 5
Improvement in self-attention in LLMs

28. Oct 2023
Nirwan Banerjee

nirwan.banerjee@uit.no



Introduction

We have learnt much about the recent advancements with regards to Large Language Models (LLMs) that 
include its history, interpretability, finetuning and the various prompting techniques used in the field today. 
However, we have yet to have a peek at the magic that unfolds behind the veil of the fancy nomenclatures 
and architectures of LLMs.



Before we start

We want our model to assign a higher probability to sentences like "Japan is the home of cherry blossoms" 
and not "Food polar charger human". Language models can be divided into three types based on their 
training methodology.



Before we start

1. Causal Language Modelling (CLM): These are also called autoregressive models. The model is trained to 
predict the next word/s in a sequence, given the knowledge of the previous words. Ex: GPT

2. Masked Language Modelling (MLM): Also known as 'fill in the blanks' technique, models are trained to fill 
in missing words in the training data. This gives them bi-directional context. Ex: BERT

3. Sequence-to-Sequence (Seq2Seq): In seq2seq modelling, the model is trained to generate output 
sequences given an input sequence. Ex: LSTM



Before we start

To put this another way, CLM language models try to estimate, “what word comes next” as opposed to MLM 
models, which “fill in the blanks”. Seq2Seq models try to estimate "what is the next sentence" as a contrast 
to CLMs.



Long range dependencies

Let's consider the two sentences, "The dog told them something 
was amiss by barking urgently.”, and “The cat told them 
something was amiss by meowing urgently”. In these sentences, 
the word that follows “amiss by…” depends a lot on whether the 
second word was dog or cat. 

Photo by Anusha Barwa on Unsplash

https://unsplash.com/@anshaaleena?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/dog-and-cat?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText


Before the age of transformers

Neural Machine Translation – Sutskever et al., in 2014, demonstrated
the use of recurrent neural nets (RNNs) for machine translation, e.g.,
given an English sentence, “The dog told them something was amiss by
barking urgently”, produce a French translation, “Le chien leur a dit que
quelque chose n’allait pas en aboyant d’urgence.”

Adapted from “Neural Machine 
Translation By Jointly Learning to Align 

and Translate” by D Bahdanau et al, ICLR 
2015.



Before the age of transformers

Neural Machine Translation – This issue could probably be solved if our
model could focus on specific parts of the sentence while generating
each French word in arbitrary order. Bahdanau et al., presented work
that does exactly this.

Adapted from “Neural Machine 
Translation By Jointly Learning to Align 

and Translate” by D Bahdanau et al, ICLR 
2015.



Before the age of transformers

Neural Machine Translation and CLM models – NMT models have a
correlation to CLM models. Both of them output one word at a time, in
sequence, with the next word depending on previously generated
words.

Adapted from “Neural Machine 
Translation By Jointly Learning to Align 

and Translate” by D Bahdanau et al, ICLR 
2015.



WHAT ARE TRANSFORMERS?
SECTION 2



Attention is all you need

§ In 2017, Viswani et al presented a new approach to machine translation that didn’t use RNNs at all — the 
Transformer.

[1] Lorem ipsum dolor sit amet, consectetur adipiscing elit. “Lorem ipsum dolor sit amet, consectetur adipiscing elit. ” 2020 25th International Conference on Pattern Recognition 
(ICPR), pp. 7892-7899. IEEE, 2021. 



A high level overview - Architecture



A high level overview – Encoder and Decoder



A high level overview - Attention

§ While processing a word, Attention enables the model to focus on other words in the input that are 
closely related to that word.

§ For example, in the above text, eg. ‘Ball’ is closely related to ‘blue’ and ‘holding’. On the other hand, 
‘blue’ is not related to ‘boy’.

§ The Transformer architecture uses self-attention by relating every word in the input sequence to 
every other word.



A high level overview - Attention

Consider two sentences:
1. The cat drank the milk because it was hungry.
2. The cat drank the milk because it was sweet.



A closer look – Embedding and Position Encoding



A closer look – Embedding and Position Encoding

§ Transformers don’t use RNNs and all words in a 
sequence are input in parallel.

§ The lost positional information is added later on
through positional encoding.

§ This is done through the equations show below 
where:
pos is the position of the word in the sequence
d_model is the length of the encoding vector
i is the index value into the vector



A closer look – Self and multi-headed attention



WHAT IS FLASH ATTENTION?
SECTION 3



Flash Attention

§ Normal self-attention is parallelizable

§ However, it’s implementation on the hardware level is very inefficient

§ It treats the GPU implementation as a blackbox

§ Flash Attention introduces hardware level implementation changes that speeds 
up training and inference by leaps and bounds



Advantages of Flash Attention

§ Fast – Upto 3 times as fast as normal self-attention

§ Memory-Efficient – O(N) vs O(N²)

§ Exact – Not an approximation

§ IO Aware – It is “Sentient”



About the hardware

§ GPUs have been adding compute 
capacity (FLOPS) at a faster pace than 
increasing the memory throughput 
(TB/s)

§ It doesn’t matter if you can compute at 
exaFLOPS speeds if there is no data to 
be processed

§ Since the hardware lost that balance 
we have to make our software 
compensate for it.



About the hardware

§ Depending on this ratio, between 
computation and memory accesses, 
operations can be classified as either:
§ Compute bound – Matrix 

multiplication
§ Memory bound – elementwise ops 

(activation, dropout, etc)

Attention is memory-bound because 
it consists mostly of elementwise ops



About the hardware

§ Masking, softmax and dropout take the bulk of the time for 
computation

§ Not matrix multiplication

§ Bulk of FLOPS is in matrix multiplication



About the hardware

§ “IO-aware” in practice boils down to exploiting the fact 
that SRAM is so much faster than HBM

§ A100 GPU has 40–80GB of high bandwidth memory

§ A bandwidth of 1.5–2.0 TB/s and 192KB of on-chip SRAM 
per each of 108 streaming multiprocessors with 
bandwidth estimated around 19TB/s



About the hardware

§ Unnecessary step in step 1 by writing to HBM and then immediately reading it

§ We can remove these redundant steps instead and do “kernel fusion”



About the hardware

Flash Attention basically boils down to two steps

§ Tiling

§ Recomputation scores 



About the hardware



Current scenario

The same thing that gives flash 
attention it’s power is also it’s 
drawback

Each new attention needs a new 
implementation 

Consequently flash attention is only 
supported for a small subset of GPUs

Writing CUDA kernel code is messy 
and machine learning engineers who 
are mainly familiar with python don’t 
find it worthwhile to get their hands 
dirty. 



Current scenario

OpenAI Triton

Triton is basically a DSL (domain-
specific language) between CUDA & 
other DSLs 

Needs to be adopted for frameworks 
like PyTorch



PrivateGPT++

A completely secure and private way of using LLMs on your private documents

Runs on our own A100 server

Can use almost any model that is open source

Built for privacy, not optimized for speed

Use case scenarios: Understanding medical, legal and other types of sensitive documents.



PrivateGPT++



PrivateGPT++ - Pipeline

Ingestion Processed 
Documents privateGPT++

Words of 
wisdom



PrivateGPT++ - Processing Documents



PrivateGPT++ - Flow diagram

Ingestion
Recursivecharactertextsplitter

Embedding 
Model

Vector 
Database

LLMs

1

874
65

32

10

9
11

User uploads fi
le

User gets response from LLM: Tromsø is a town in 
northern Norway

User asks: Where is 
Tromsø?



PrivateGPT++ - Vector Embeddings



PrivateGPT++ - Vector Similarity



PrivateGPT++ - Vector Similarity



PrivateGPT++ - Tokenization and Embeddings

Difference between Tokenization and 
Embeddings.




