
Day 2 - Session 6
Large Scale Training of LLMs and Challenges

28. Oct 2023
Suyog Jadhav
suyog.s.jadhav@uit.no



Introduction

- In this session, we will learn about all the basics you will need to know to get started training 
your own LLMs.

- We will also touch on some of the most prevalent challenges currently and see some ways of 
mitigating them.

- Finally, there will also be a programming demo at the end to help you see these things in 
action!



A usual LLM training workflow



Key Challenges

- Data
- Ethical concerns
- Bias and prejudice against groups of individuals

- Legal
- IP violation concerns for crowdsourced training data

- Environmental
- Rising concerns around large scale LLM training amounting to large carbon footprint

- Hardware
- Most LLMs are too large to fit in today’s GPUs
- How do we overcome the memory limitation without sacrificing too much of the 
computational speed?



Currently, the highest amount of GPU memory available on a 
GPU is 80GB, on an NVIDIA A100 GPU. 

“Training can now be done on 175 billion-parameter models on 300 
billion tokens using 1,024 NVIDIA A100 GPUs in just 24 days–reducing 
time to results by 10 days, or some 250,000 hours of GPU computing, 
prior to these new releases.” – From Nvidia’s recent blog1

1. https://developer.nvidia.com/blog/nvidia-ai-platform-delivers-big-gains-for-large-language-models/

The size of GPT-3

>1 of these is now a 

requirement!

https://developer.nvidia.com/blog/nvidia-ai-platform-delivers-big-gains-for-large-language-models/
https://developer.nvidia.com/blog/nvidia-ai-platform-delivers-big-gains-for-large-language-models/


Solution? Parallelism

1. Data Parallelism (DP): 
Replicate the model on all the GPUs
Split the available data across them

+ Reduces training time, as the data is 
being split across multiple GPUs
+ If model fits on a single GPU, this is 
usually the fastest of all the options
+ No modifications to the model code 
required

- If the model does not fit on a single GPU, 
this is completely infeasible

Sp
lit

 in
to

 c
hu

nk
s



Parallelism (contd.)

2. Pipeline Parallelism (PP): Also called 
“vertical” parallelism, as we split the model 
layers by a vertical slice.

Split the model layers across different GPUs

+ Reduces memory consumption of the 
model parameters on a single GPU
+ If the model does not fit on a single GPU, 
this is still feasible

- Requires heavy modifications to the model 
code

GPU GPUGPU



Parallelism (contd.)

3. Tensor Parallelism (TP): Also called 
“horizontal” parallelism, as we split the model 
layers by a horizontal slice.

Splits the computation such that matrix 
multiplications that don’t depend on each 
other are separated into different GPUs

+ Reduces memory consumption of the 
model parameters on a single GPU
+ If the model does not fit on a single GPU, 
this is still feasible
+ Can be made in a way that reduces 
aggregation steps to just once, reducing the 
queuing and GPU idling

- Requires heavy modifications to the model 
code



Parallelism (contd.)

4. DeepSpeed ZeRO (Zero Redundancy Optimizer): Result of a recent research work from Microsoft1.

Splits the computation such that the model is split horizontally in each layer, and each of the GPUs 
fetch the required values on-demand from the GPU that has it. 

Also performs sharding of the tensors somewhat similar to TP, except the whole tensor gets 
reconstructed in time for a forward or backward computation, therefore the model doesn’t need to 
be modified!

Microsoft DeepSpeed2 also implements many other optimizations such as layer fusion, CPU and 
NVMe offloading, distributed computing, etc. that effectively take the available memory space to an 
indefinitely large amount.

+ Reduces memory consumption of the model parameters on a single GPU
+ If the model does not fit on a single GPU, this is still feasible
+ Does not require any modifications to the model code

1. “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models” https://arxiv.org/abs/1910.02054
2. https://github.com/microsoft/DeepSpeed

https://arxiv.org/abs/1910.02054
https://github.com/microsoft/DeepSpeed
https://arxiv.org/abs/1910.02054
https://github.com/microsoft/DeepSpeed


DeepSpeed ZeRO

The following video illustrates the workings of DeepSpeed ZeRO (stage-3) with an example training 
iteration done with 4 GPUs:

Video from Microsoft’s blog on DeepSpeed: https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-
parameters/

https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/
https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/
https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/
https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/


Demo Time!
…the return of the mannequin

DEMO CODE



Question, Mark?

DEMO CODE


