Grey Theme Objects

Publications

The researchers in our team regularly have their works published in top scientific journals. You'll find our recent publications mentioned here. 

VS_Thumbnail.jpg

Abstract:  Mitochondria play a crucial role in cellular metabolism. This paper presents a novel method to visualize mitochondria in living cells without the use of fluorescent markers. We propose a physics-guided deep learning approach for obtaining virtually labeled micrographs of mitochondria from bright-field images. We integrate a microscope’s point spread function in the learning of an adversarial neural network for improving virtual labeling. We show results (average Pearson correlation 0.86) significantly better than what was achieved by state-of-the-art (0.71) for virtual labeling of mitochondria. We also provide new insights into the virtual labeling problem and suggest additional metrics for quality assessment. The results show that our virtual labeling approach is a powerful way of segmenting and tracking individual mitochondria in bright-field images, results previously achievable only for fluorescently labeled mitochondria.

Biomedical Optics Express: Vol. 13, Issue 10, pp. 5495-5516 (2022)

1. A Somani, AA Sekh, IS Opstad, AB Birgisdottir, T Myrmel, BS Ahluwalia (2022). Virtual Labeling of Mitochondria in Living Cells using Correlative Imaging and Physics-guided Deep Learning
 Biomedical Optics Express 10.1364/BOE.464177
2. Soham Chattopadhyay, Antoni Malachowski, J. K. Swain, R. A. Dalmo, A. Horsch, D. K. Prasad (2022). Mapping functional changes in the embryonic heart of Atlantic salmon post viral infection using AI technique. IEEE International Conference on Image Processing (ICIP)
3. Deepak K Gupta, Udbhav Bamba, Abhishek Thakur, Akash Gupta, Suraj Sharan, Ertugrul Demir, Dilip K Prasad (2022). UltraMNIST Classification: A Benchmark to Train CNNs for Very Large Images. arXiv preprint arXiv:2206.12681
4. Pragyan Banerjee, Shivam Milind Akarte, Prakhar Kumar, Muhammad Shamsuzzaman, Krishna Agarwal, Ankit Butola, Dilip K Prasad, Frank Melandsø, Habib Anowarul (2022). High-resolution imaging in acoustic microscopy using deep learning. 
5. D Singh, A Somani, A Horsch, DK Prasad (2022). Counterfactual Explainable Gastrointestinal and Colonoscopy Image Segmentation. International Symposium on Biomedical Imaging (ISBI)
12. Somani, Ayush & Sk, Arif Ahmed & Opstad, Ida & Birgisdottir, Asa & Myrmel, Truls & Ahluwalia, Balpreet & Agarwal, Krishna & Prasad, Dilip & Horsch, Alexander. (2021). Digital Staining of Mitochondria in Label-free Live-cell Microscopy. 10.1007/978-3-658-33198-6_55. 
14. Joshi, Deepa & Butola, Ankit & Kanade, Sheetal & Prasad, Dilip & Sevanthi, Amitha Mithra & Singh, N & Bisht, Deepak & Mehta, Dalip. (2021). Label-free non-invasive classification of rice seeds using optical coherence tomography assisted with deep neural network.
Optics & Laser Technology. 137. 10.1016/j.optlastec.2020.106861. 
15. Jadhav, Suyog & Acuña M., Sebastian & Opstad, Ida & Ahluwalia, Balpreet & Agarwal, Krishna & Prasad, Dilip. (2021). Artefact removal in ground truth deficient fluctuations-based nanoscopy images using deep learning. Biomedical Optics Express. 12. 191. 10.1364/BOE.410617. 
16. Zhe, Quah & Sk, Arif Ahmed & Quek, Chai & Prasad, Dilip. (2021). Recurrent Self-evolving Takagi–Sugeno–Kan Fuzzy Neural Network (RST-FNN) Based Type-2 Diabetic Modeling. 10.1007/978-3-030-74826-5_11. 
17. Jun, Seow & Sk, Arif Ahmed & Quek, Chai & Prasad, Dilip. (2021). seMLP: Self-evolving Multi-layer Perceptron in Stock Trading Decision Making. SN Computer Science.
2. 10.1007/s42979-021-00524-9. 
18. Liu, Feng & Sk, Arif Ahmed & Quek, Chai & Ng, Geok & Prasad, Dilip. (2021). RS-HeRR: a rough set-based Hebbian rule reduction neuro-fuzzy system. Neural Computing and Applications. 33. 10.1007/s00521-020-04997-2. 
19. Ströhl, Florian & Jadhav, Suyog & Ahluwalia, Balpreet & Agarwal, Krishna & Prasad, Dilip. (2020). Object detection neural network improves Fourier ptychography reconstruction. Optics Express. 28. 37199. 10.1364/OE.409679.